Problem 13

Suppose f is a function that satisfies the equation

$$
f(x+y)=f(x)+f(y)+x^{2} y+x y^{2}
$$

for all real numbers x and y. Suppose also that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=1
$$

(a) Find $f(0)$.
(b) Find $f^{\prime}(0)$.
(c) Find $f^{\prime}(x)$.

Solution

The function f is arbitrary and satisfies

$$
f(x+y)=f(x)+x^{2} y+x y^{2}+f(y) .
$$

Recognize that this is similar to a cubic function.

$$
\begin{aligned}
(x+y)^{3} & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
\frac{1}{3}(x+y)^{3} & =\frac{1}{3} x^{3}+x^{2} y+x y^{2}+\frac{1}{3} y^{3}
\end{aligned}
$$

Therefore,

$$
f(x)=\frac{1}{3} x^{3}+g(x),
$$

where $g(x)$ is another arbitrary function that satisfies

$$
g(x+y)=g(x)+g(y) .
$$

This condition on g is characteristic of a linear function. So then

$$
f(x)=\frac{1}{3} x^{3}+A x+B
$$

where A and B are arbitrary constants. Find them using the given limit.

$$
\begin{aligned}
1 & =\lim _{x \rightarrow 0} \frac{f(x)}{x} \\
& =\lim _{x \rightarrow 0} \frac{\frac{1}{3} x^{3}+A x+B}{x}
\end{aligned}
$$

In order for this limit to exist and be equal to 1 , set $B=0$ so that the factor of x in the denominator cancels out.

$$
\begin{aligned}
1 & =\lim _{x \rightarrow 0} \frac{\frac{1}{3} x^{3}+A x}{x} \\
& =\lim _{x \rightarrow 0}\left(\frac{1}{3} x^{2}+A\right)
\end{aligned}
$$

Use the appropriate limit laws to evaluate the limit.

$$
\begin{aligned}
1 & =\lim _{x \rightarrow 0} \frac{1}{3} x^{2}+\lim _{x \rightarrow 0} A \\
& =\frac{1}{3}(0)^{2}+A \\
& =A
\end{aligned}
$$

Consequently, with $A=1$ and $B=0$,

$$
f(x)=\frac{1}{3} x^{3}+x,
$$

which means

$$
f(0)=\frac{1}{3}(0)^{3}+(0)=0
$$

and

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\frac{1}{3}(x+h)^{3}+(x+h)\right]-\left[\frac{1}{3} x^{3}+x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{3}\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)+x+h-\frac{1}{3} x^{3}-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2} h+x h^{2}+\frac{h^{3}}{3}+h}{h} \\
& =\lim _{h \rightarrow 0}\left(x^{2}+x h+\frac{h^{2}}{3}+1\right) \\
& =x^{2}+1
\end{aligned}
$$

and

$$
f^{\prime}(0)=(0)^{2}+1=1 .
$$

